Detectors and Sensors

General Issues for Detectors

- Need to consider system issues
- Optics can also play a role but don't seem to be covered
 - coatings that degrade
 - liquid crystals
- New detector materials should be looked at by the materials group
- May need to fly effectometers with science detectors for maximum benefit

What is a Detector?

- Measures photons, particles or fields
- Includes:
 - Sensor
 - Front end electronics
 - -A/D
 - May include on-chip processing
- Several types
 - Effectometers measure effects of solar variability
 - Science detectors both to study sun and earth and for other applications (i.e., astonomy)
- Other
 - Strategic
 - Aviation
 - Station/shuttle sensors
 - Spacecraft

SET Detector Applicability Matrix (1 of 3)

Detector Class y-ray	Detector Type several	Subtype —	Identified as SET Candidate? No	Presentation/ Product Description No
X-ray	CCD MCP-based		Possible No	No
EUV	calorimeters/ s/c	— 4CD	No (Maybe l	long term) No
EUV	Image Intensifier/N Superconducting	STJ/TES	No (Maybe	
UV	CCD GaN Si Photodiode Image Intensifier/M	— — — ICP —	Possible No (Maybe Possible No	No long term)
VIS	CCD	N-channel P-channel s-doped mini-chan OTCCDS		Yes

SET Detector Applicability Matrix (2 of 3)

Detector Class	Detector Type	Subtype	Identified as SET Candidate?	Presentation/ Product Description
VIS	CMOS	APS Hi Visi HIT SOI, SOS	Yes Yes Yes	Yes
IR	Quanumdots µbolometer Thermopile	— HgCdTe InSb InGaAs Si:As, Si:Sb, S	No No Yes Si:Ge	No No Yes

SET Detector Applicability Matrix (3 of 3)

Detector Class	Detector Type	Identified as ET Candidate?	Presentation/ Product Description
Electrons	MCP-based	Yes	Yes
Low energy protons	MCP-based	Yes	Yes
Neutrals + ions	MCP-based	Yes	Yes
High Energy Protons	MCF-based	Yes	Yes
Neutrons	New Techniques	?	?
E Field	Booms	Yes	See other area (booms)
B Field	Magnetometers	?	No

Type of Detector:	Title: Si Radiation Sensor
Solar Pointing Sensor	

Background: *No more than 5 sentences here....*Solar sensor based on standard Integrated circuit (IC) technology. Device uses a novel approach to device fabrication to produce a theoretical pointing accuracy of 0.2 arc sec (1 - 2 arc sec is practical performance expectation). Device is significantly smaller than current state of the art devices.

Description of Technology Requirements for On-orbit Testing: *No more than 5 sentences here....* On-orbit testing is required to validate pointing accuracy. Space is also required to characterize bias currents generated by photo diodes form solar radiation not filtered by Earth's atmosphere. Radiation effects on device performance and life time also need to be quantified. Biasing by other luminaries (i.e. Earth, Moon) also need to be characterized.

Timeframe Technology is Needed:	Benefiting Mission(s):		
2003	Any mission requires accurate location of solar disc.		
Timeframe for Technology Maturity:	Benefits to LWS Applications Areas:		
2003	Solar Studies		
Flight Requirements: (if known)	Name: Michael Watson		
Orbit: no preference	Phone: (256) 544-3186		
Altitude:	Email: mike.watson@msfc.nasa.gov		
Inclination:	Organization: NASA/MSFC/MS EDIZ		
Power: <1mW			
Weight (kg): =1e gm			
Size (cm): 1 x 1 x 1			
Telemetry: < 1 upbs			
Environment Measurement: Solar Pointing			
Radiation Effects			

Type of Detector:	Title: Highly miniaturized sensor for ions or electrons
Low energy charged particle	

Background: *No more than 5 sentences here....*Sensor will characterize plasma environment in ionosphere or magnetosphere both for science as well as other flight test can be used to determine S/C potential. Development is based on Cassine + OS-1 designs. Need space environment for full qualification.

Description of Technology Requirements for On-orbit Testing: *No more than 5 sentences here....* Equipotential S/C if possible

Timeframe Technology is Needed:	Benefiting Mission(s):		
2004/2005	MMS, Constellation		
Timeframe for Technology Maturity:	Benefits to LWS Applications Areas:		
2003, TRL: 3/4	S/C environment		
Flight Requirements: (if known)	Name: Raymond Goldstein		
Orbit: LEO to Geosych.	Phone: (210) 522-6223		
Altitude:	Email: rgoldstein@swri.edu		
Inclination: Jany	Organization: Southwest Research Institute		
Power: <1.5 W			
Weight (kg): 0.25			
Size (cm): 3.5 dia x 10			
Telemetry:			
Environment Measurement: Provided by detector			

Type of Detector:	Title: Dosimetry Intercomparison and Miniaturization
Si Dosimeter + LET Spectrometer	Experiment (DIME)

Background: *No more than 5 sentences here....* This will be a collaboration of 6 laboratories with at least 4 detector systems. Provides dosimetry from N rad. to M rad. with a mix of proven naval technologies. All dosimeters should be miniaturized, low power, and available after flight through industrial partners. System on a chip architecture employed. Usefull to predict SEE and TID in microelectronics and risk in humans.

Description of Technology Requirements for On-orbit Testing: *No more than 5 sentences here....* Minimal telemetry temperature measurements. System CPU must read digitized output from each instrument.

Timeframe Technology is Needed:	Benefiting Mission(s):	
	Any requiring radiation monitoring	
Timeframe for Technology Maturity:	Benefits to LWS Applications Areas:	
2 - 4	Microelectronics + Astronaut	
Flight Requirements: (if known)	Name: Pete McNulty	
Orbit: Elliptical (transfer) or polar orbit preferred	Phone: (864) 656-3419	
Altitude:	Email: mpeter@Clemson.edu	
Inclination:	Organization: Clemson University	
Power:		
Weight (kg):		
Size (cm):		
Telemetry:		
Environment Measurement: Radiation and LET Spectra		

Type of Detector:

Title: On-Orbit Val of Next Generation, Ultra-Low Power,

Gen 2 CMOS Active Pixel Sensor

Highly Integrated, & Rad Hard CMOS Active Pixel Sensor (APS) Detectors

Background: JPL has designed, fabricated and characterized a new generation of high yield, low cost, 512x512 ultra-low power prototype imagers with improved performance: 1.5 linearity INL>78dB dynamic range, OE>53%, blooming immune, 4 - 10 electron read noise, digital (10bits) and analog (<13bits) outputs, that provide data efficient windowing, high frame rate as well as even driven on-chip processing and target tracking. Rad Hard CMOS(256x256) imagers have achieved >5MRad gamma 1.2E12 proton @ 63MeV that continue to image well even at ~77K. We need on-orbit validation for their low risk inclusion in robust LWS instrument (ie. We have been teaming on GFSC Phoenix coronagraph/Solar-B. Imaging Magnetosphere/Solar Physics. NCAR High Altitude Observatory LOS magnetograph, Solar Sail boom and antenna deployment low cost chip cameras).

Description of Technology Requirements for On-orbit Testing: Realistic long term full angle and energy spectrum of all particle types in that On-Orbit environment and well as operational temperatures that are anticipated to be encountered over the life of the LWS missions planned

Timeframe Technology is Needed:

LWS mission schedule

Benefiting Mission(s): Solar Sail, GAMS, SDO, Solar Sentinel,

Far Side Observer, Coronagraph Vector magetographs, Smart Hybrid IR-UV sensors

Timeframe for Technology Maturity:

Now

Benefits to LWS Applications Areas: Robust,

RH Ultra Low-Power/Low Cost, FPA detectors for high performance miniaturized sensors

Flight Requirements: (if known)

Orbit: MEO or GEO transfer to accumulate dose

Altitude: 1,500Km to 36,000Km

Inclination: TDB

Power: $\sim 1-2w$

Weight (kg): $\sim 1-3$ Kg **Size (cm):** 30x30x90

Telemetry: TDB

Environment Measurement: TDB

Robert Stirbl Name:

Phone: (818) 635-6793

robert.stirbl@jpl.nasa.gov Email:

Organization: JPL